2018-2020 论文

46. Zhan, Q.Y., Zhu, D.C., Wang, Q., Cawood, P.A., Xie, J.C., Liu, X., Li, S.M., Zhang, L.L., Zhao, Z.D., 2021.   Imaging the Late Triassic lithospheric architecture of the Yidun Terrane, eastern Tibetan Plateau: Observations and interpretations. GSA Bulletin https://doi.org/10.1130/GSAB.S.13651376.v1 [PDF]


45. Shuai, X., Li, S.M., Zhu, D.C., Wang, Q., Zhang, L.L., Zhao, Z.D., 2021. Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites: An example from Central Tibet. Lithos https://doi.org/10.1016/j.lithos.2021.105968 [PDF]


44. Song, S.W., Zhu, D.C., Wang, Q., Cawood, P.A., Zhan, Q.Y., Li, S.M., Zhang, L.L., Zhao, Z.D., 2021. Generation of syn-collisional S-type granites in collision zones: An example from the Late Triassic Tanggula Batholith in northern Tibet. Gondwana Research https://doi.org/10.1016/j.gr.2020.12.023 [PDF]


43. Chen, S.R., Wang, Q., Zhu, D.C., Weinberg, R.F., Zhang, L.L., Zhao, Z.D., 2021. Reheating and magma mixing recorded by zircon and quartz from high-silica rhyolite in the Coqen region, southern Tibet. American Mineralogist 106, 112–122. [PDF]


42. Liu, Z., Zhu, D.C., Jagoutz, O., Rezeau, H., Wang, Q., Eyuboglu, Y., 2020. Magmatic Evolution Following Damp Tholeiitic and Wet Calc-alkaline Liquid Lines of Descent: An Eastern Pontides (NE Turkey) Example. Journal of Petrology https://doi.org/10.1093/petrology/egaa088. [PDF]


41. Xia, Y., Wang Q., Zhu, D.C., Ernst, R.E., Zhang, S.Q., Liu, D., Zhao, Z.D., 2020. Intermediate rocks in the Comei large igneous provinces produced by amphibole crystallization of tholeiitic basaltic magma. Lithos 374–375, 105731. [PDF]


40. Zhan, Q.Y., Zhu, D.C., Wang, Q., Weinberg, R.F., Xie, J.C., Li, S.M., Zhang, L.L., Zhao, Z.D. 2020. Source and pressure effects in the genesis of the Late Triassic high Sr/Y granites from the Songpan-Ganzi Fold Belt, eastern Tibetan Plateau. Lithos 368–369, 105584. [PDF]


39. Xie, J.C., Zhu, D.C.*, Wang, Q., Zhao, Z.D., Zhang, S.Q., 2020. Compositional changes of granitoids from the Menglian Batholith in SW China at ca. 122 Ma: Implications for the origin of decoupled Nd-Hf isotopic compositions and crust generation in collision zones. Lithos 364–365,105550. [PDF]


38. Li, S.M., Wang, Q., Zhu, D.C.*, Cawood, P.A., Stern, R.J., Weinberg, R.F., Zhao, Z.D., Mo, X.X., 2020. Reconciling Orogenic Drivers for the Evolution of the Bangong‐Nujiang Tethys During Middle‐Late Jurassic. Tectonics 39, e2019TC005951. [PDF]

37. Xu, W., Zhu, D.C.*, Wang, Q., Weinberg, R.F., Wang, R., Li, S.M., Zhang, L.L., Zhao, Z.D., 2019. Constructing the Early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. Journal of Petrology 60, 515–55. [PDF]


36. Zhang, L.L., Zhu, D.C., Wang, Q., Zhao, Z.D., Liu, D., and Xie, J.C., 2019. Late Cretaceous volcanic rocks in the Sangri area, southern Lhasa Terrane, Tibet: Evidence for oceanic ridge subduction. Lithos, 326–327, 144–157.[PDF]


35. Zhang, L.X., Wang, Q.*, Zhu, D.C., Li, S.M., Zhao, Z.D., Zhang, L.L., Chen, Y., Liu, S.A., Zheng, Y.C., Wang, R., Liao, Z.L., 2019. Generation of leucogranites via fractional crystallization: A case from the Late Triassic Luoza batholith in the Lhasa Terrane, southern Tibet. Gondwana Research 66, 6376. [PDF]

34. Zhan, Q.Y., Zhu, D.C.*, Wang, Q., Cawood, P.A., Xie, J.C., Li, S.M., Wang, R., Zhang, L.L., Zhao, Z.D., Deng, J., 2018. Constructing the Eastern Margin of the Tibetan Plateau during the Late Triassic. Journal of Geophysical Research: Solid Earth 123, 1044910459. [PDF]

33.Zhu, D.C.*, Wang, Q., Chung, S.L., Cawood, P.A., Zhao, Z.D., 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Treloar, P.J. & Searle, M.P. (eds.) Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publications 483, 583–604. [PDF]

32. Liu, Z., Zhu, D.C.*, Wang, Q., Eyuboglu, Y., Zhao, Z.D., Liu, S.A., Xu, L.J., 2018. Transition from low-K to high-K calc-alkaline magmatism at approximately 84 Ma in the eastern Pontides (NE Turkey): Magmatic response to slab rollback of the Black Sea. Journal of Geophysical Research: Solid Earth 123, 7604–7628. [PDF]

31. Yi, J.K., Wang, Q.*, Zhu, D.C., Li, S.M., Liu, S.A., Wang, R., Zhang, L.L., Zhao, Z.D., 2018. Westward-younging high-Mg adakitic magmatism in central Tibet: Record of a westward-migrating lithospheric foundering beneath the Lhasa–Qiangtang collision zone during the Late Cretaceous. Lithos 316–317, 92–103. [PDF]

30. Liu, A.L., Wang, Q.*, Zhu, D.C., Zhao, Z.D., Liu, S.A., Wang, R., Dai, J.G., Zheng, Y.C., Zhang, L.L., 2018. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet. Lithos 304–307, 374–387. [PDF]

29. Wang, Q.*, Zhu, D.C., Liu, A.L., Cawood, P.A., Liu, S.A., Xia, Y., Chen, Y., Wang, H., Zhang, L.L., Zhao, Z.D., 2018. Survival of the Lhasa Terrane during its collision with Asia due to crust-mantle coupling revealed by ca. 114 Ma intrusive rocks in western Tibet. Lithos 304–307, 200–210. [PDF]

28. Li, S.M., Wang, Q., Zhu, D.C.*, Stern, R.J., Cawood, P.A., Sui, Q.L., Zhao, Z.D. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. Journal of Geophysical Research: Solid Earth 123, 3391–3413.   [PDF]


2007-2017 论文

27. Zhu, D.C.*, Wang, Q., Zhao, Z.D., 2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples. Science China - Earth Sciences 60, 1040–1056. [PDF]


26. Zhu, D.C.*, Wang, Q., Cawood, P.A., Zhao, Z.D., Mo, X.X., 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research - Solid Earth 122, 214–223.[PDF]


25. Li, S.M., Zhu, D.C*., Wang, Q., Zhao, Z.D., Zhang, L.L., Liu, S.A., Chang, Q.S., Lu, Y.H., Dai, J.G., Zheng, Y.C., 2016. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic. Lithos 262, 456–469. [PDF]

24. Xie, J.C., Zhu, D.C*., Dong, G.C., Zhao, Z.D., Wang, Q., Mo, X.X., 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Research 39, 217–229. [PDF]


23. Zhu, D.C., Chung, S.L., Niu, Y.L., 2016. Recent advances on the tectonic and magmatic evolution of the Greater Tibetan Plateau: A special issue in honor of Prof. Guitang Pan. Lithos 245, 1–6. [PDF]


22. Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A., Wang, L.Q., 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 245, 7–17. [PDF]


21. Zhu, D.C., Wang, Q., Zhao, Z.D., Chung, S.L., Cawood, P.A., Niu, Y.L., Liu, S.A., Wu, F.Y., Mo, X.X., 2015. Magmatic record of India-Asia collision. Scientific Reports 5, 14289. [PDF]


20. Wang, Q., Zhu, D.C*., Cawood, P.A., Zhao, Z.D., Liu, S.A., Chung, S.L., Zhang, L.L., Liu, D., Zheng, Y.C., Dai, J.G., 2015. Eocene magmatic processes and crustal thickening in southern Tibet: Insights from strongly fractionated ca. 43 Ma granites in the western Gangdese Batholith. Lithos 239, 128–141. [PDF]


19.Wang, Q., Zhu, D.C*., Zhao, Z.D., Liu, S.A., Chung, S.L., Li, S.M., Liu, D., Dai, J.G., Wang, L.Q., Mo, X.X., 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination underneath the Lhasa-Qiangtang collision zone. Lithos 198199, 2437.[PDF]


18. Li, S.M., Zhu, D.C*., Wang, Q., Zhao, Z.D., Sui, Q.L., Liu, S.A., Liu, D., Mo, X.X., 2014. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos 205, 284–297. [PDF]


17. Chen, Y., Zhu, D.C*., Zhao, Z.D., Meng, F.Y., Wang, Q., Santosh, M., Wang, L.Q., Dong, G.C., Mo, X.X., 2014. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research 26, 449–463. [PDF]


16. Xia, Y., Zhu, D.C*., Wang, Q., Zhao, Z.D., Liu, D., Wang, L.Q., Mo, X.X., 2014. Picritic porphyrites and associated basalts from the remnant Comei Large Igneous Province in SE Tibet: records of mantle-plume activity. Terra Nova 26, 487–494. [PDF]


15. Sui, Q.L., Wang, Q., Zhu, D.C*., Zhao, Z.D., Chen, Y., Santosh, M., Hu, Z.C., Yuan, H.L., Mo, X.X., 2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos 168–169, 144–159. [PDF]


14. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Hou, Z.Q., Mo, X.X., 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research 23, 1429–1454. [PDF]


13. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Wang, Q., Ji, W.H., Dong, G.C., Sui, Q.L., Liu, Y.S., Yuan, H.L., Mo, X.X., 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology 328, 290–308. [PDF]


12. Guan, Q., Zhu, D.C*., Zhao, Z.D., Dong, G.C., Zhang, L.L., Li, X.W., Liu, M., Liu, M.H., Mo, X.X., Liu, Y.S., Yuan, H.L., 2012. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research 21, 88–99. [PDF]


11. Wang, Q., Zhu, D.C*., Zhao, Z.D., Zhang, X.Q., Guan, Q., Sui, Q.L., Hu, Z.C., Mo, X.X., 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences 53, 59–66.[PDF]


10. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Mo, X.X., 2011. Lhasa Terrane in southern Tibet came from Australia. Geology 39, 727–730. [PDF]


9. Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., Wu, F.Y., 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters 301, 241–255.[PDF]


8. Zhu, D.C., Mo, X.X., Zhao, Z.D., Niu, Y.L., Wang, L.Q., Chu, Q.H., Pan, G.T., Xu, J.F., Zhou, C.Y., 2010. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. GSA Bulletin 122, 979–993. [PDF]


7. Zhu, D.C., Chung, S.L., Mo, X.X., Zhao, Z.D., Niu, Y.L., Song, B., Yang, Y.H., 2009. The 132 Ma Comei–Bunbury large igneous province: Remnants identified in present-day SE Tibet and SW Australia. Geology 37, 583–586. [PDF]


6. Zhu, D.C., Mo, X.X., Niu, Y.L., Zhao, Z.D., Wang, L.Q., Liu, Y.S., Wu, F.Y., 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology 268, 298–312. [PDF]


5. Zhu, D.C., Mo, X.X., Niu, Y.L., Zhao, Z.D., Wang, L.Q., Pan, G.T., Wu, F.Y., 2009. Zircon U–Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics 469, 48–60. [PDF]

4. Zhu, D.C., Pan, G.T., Zhao, Z.D., Lee, H.Y., Kang, Z.Q., Liao, Z.L., Wang, L.Q., Li, G.M., Dong, G.C., Liu, B., 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt,southern Tibet: Products of slab melting and subsequent melt–peridotite interaction? Journal of Asian Earth Sciences 34, 298–309. [PDF]


3. Zhu, D.C., Mo, X.X., Pan, G.T., Zhao, Z.D., Dong, G.C., Shi, Y.R., Liao, Z.L., Zhou, C.Y., 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere? Lithos 100, 147–173. [PDF]


2. Zhu, D.C., Pan, G.T., Chung, S.L., Liao, Z.L., Wang, L.Q., Li, G.M., 2008. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet. International Geology Review 50, 442–471. [PDF]


1. Zhu, D.C., Pan, G.T., Mo, X.X., Liao, Z.L., Jiang, X.S., Wang, L.Q., Zhao, Z.D., 2007. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume–lithosphere interaction. Journal of Asian Earth Sciences 29, 320–335. [PDF]